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Angelo Secchi

* First scientist to state
authoritatively that the sun is
a star

* |nvented secchi disk for first
measurement of ocean color.

* The first disk was lowered
from the papal yacht,
I'immacolata Concezion
(Immaculate Conception), on
April 20, 1865 (Carlson and
Simpson, 1996).
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The Active Pipe Model
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Terrestrial Aquatic Linkages
Major Areas of Research

* Terrestrial Transport to Inland Waters
— Hydrologic controls
— Terrestrial Biological Controls

* Transport and Transformations during Transit

— Major Processes
* Removal/addition and change in composition/form

— Impact on Inland Waters

* Impact on Receiving Coastal Waters
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Riverine Transport to Ocean

(b)

FIGURE 11.1 DOC fluxes (a) and yields (b) for the top 30 global rivers ranked by discharge. Data from Table 1.
Raymond and Spencer 2014
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How much terrestrial C enters inland
waters?

* Measurements

— Need to focus on small watersheds
 End-member land-use systems across climate gradients
* Elucidate hot-spots (e.g., wetlands for DOC)

— Need to sample hydrologic events, which are
short in duration

e Models

— Have to have strong hydrologic component

— Need for both simple and complex models
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Terrestrial transfers: DOC
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Figure 4. (a) Temporal variations in stream discharge and DOC
concentrations at the catchment outlet during the study period
and (b) example of DOC concentrations versus discharge showing
hysteresis patterns (arrows indicate chronology). Monitored storm
events are indicated by numbers in box (a).

Lambert et al. 2014
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DOC & POC Export with Storms: South
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DOC Export with Storms: Sleepers
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Connecticut River at Middle Haddam (01193050)
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LAND USE AND CLIMATE VARIABILITY AMPLIFY CARBON, NUTRIENT,
AND CONTAMINANT PULSES: A REVIEW WITH MANAGEMENT IMPLICATIONS'

Sujay S. Kaushal, Paul M. Mayer, Philippe G. Vidon, Rose M. Smith, Michael J. Pennino,
Tamara A. Newcomer, Shuiwang Duan, Claire Welty, and Kenneth T. Belt*

ABSTRACT: Nonpoint source pollution from agriculture and urbanization is increasing globally at the same time
climate extremes have increased in frequency and intensity. We review =200 studies of hydrologic and gaseous
fluxes and show how the interaction between land use and climate variability alters magnitude and frequency of
carbon, nutrient, and greenhouse gas pulses in watersheds. Agricultural and urban watersheds respond similarly
to climate variability due to headwater alteration and loss of ecosystem services to buffer runoff and temperature
changes. Organic carbon concentrations/exports increase and organic carbon quality changes with runoff. Nitrogen
and phosphorus exports increase during floods (sometimes by an order of magnitude) and decrease during droughts.
Relationships between annual runoff and nitrogen and phosphorus exports differ across land use. CH; and N, O pulses in
riparian zones/floodplains predominantly increase with: flooding, warming, low oxygen, nutrient enrichment, and organic
carbon. CHy, N3O, and CO; pulses in streams/rivers increase due to similar factors but effects of floods are less known
compared to base flow/droughts. Emerging questions include: (1) What factors influence lag times of contaminant pulses
in response to extreme events? (2) What drives resistance/resilience to hydrologic and gaseous pulses? We conclude with
eight recommendations for managing watershed pulses in response to interactive effects of land use and climate change.

(KEY TERMS: eutrophication; water quality; hypoxia; nonpoint source pollution; methane; nitrous oxide; carbon
dioxide; restoration; wetlands; best management practices.)

Kaushal, Sujay S., Paul M. Mayer, Philippe G. Vidon, Rose M. Smith, Michael J. Pennino, Tamara A. New-
comer, Shuiwang Duan, Claire Welty, and Kenneth T. Belt, 2014. Land Use and Climate Variability Amplify

Carbon, Nutrient, and Contaminant Pulses: A Review with Management Implications. Journal of the American
Water Resources Association (JAWRA) 50(3): 585-614. DOI: 10.1111jawr.12204
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Modeling DOM Responses to Climate
Change in New England

* Hydrologic Responses

— Understanding storm flow through surficial soils is key
to modeling loadings (Sebestyen et al. (2009))

e Storm flow through surficial soils will increase in winter due
to increased dormant season precipitation due to climate
change.

* Increase in the number of large events will increase DOM
transport (Raymond et al. in review)

* Biologic Processes

— Stream water losses decrease due to declines in
litterfall and soil C mineralization rates with future
climate change (Campbell et al. 2009)
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Enhanced transfer of terrestrially derived carbon to the atmosphere
in a flooding event

Thomas S. Bianchi,' Fenix Gancia-Tigrcros,' Shari A. Yvon-Lcwis,' Michael Shiclds,'
Heath J. Mills,l David Butman,2 Christopher ()sbum,3 Peter Raymond,2

G. Christopher Shank,* Steven F. DiMarco,' Nan Walker,” Brandi Kiel Reese,"’

Ruth Mullins-Perry," Antonietta Quigg,"® George R. Aiken,” and Ethan L. Grossman®

Received 26 November 2012; revised 14 October 2012; accepted 21 November 2012; published 8 January 2013. St O r I I I I I I I p a Ct S

between soil/plant litter and aquatic carbon pools. Here we -
demonstrate that the summer 2011 flood in the Mississippi O n Rece IVI n g

River basin, caused by extreme precipitation events, resulted
in a “flushing” of terrestrially derived dissolved organic Wate rS
carbon (TDOC) to the northern Gulf of Mexico. Data from
the lower Atchafalaya and Mississippi rivers showed that the
DOC flux to the northern Gulf of Mexico during this flood
was significantly higher than i previous years. We also
show that consumption of radiocarbon-modern TDOC by
bacteria in floodwaters in the lower Atchafalaya River and
along the adjacent shelf contributed to northern Gulf shelf

waters changing from a net sink to a net source of CO, to the
atmosphere in June and August 2011. This work shows that
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Key Points:

« Surface tDOC concentrations are
retnieved using ocean-color remote
sensing

« tDOC cross-shelf export is sporadic
and exhibits large interannual
variability

« tDOC cross-shelf export is enhanced
during years of anomalously high
discharge
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Pulsed, cross-shelf export of terrigenous dissolved organic
carbon to the Gulf of Mexico
Cédric G. Fichot'2, Steven E. Lohrenz?, and Ronald Benner'2

"Marine Science Program, University of South Carolina, Columbia, South Carolina, USA, *Department of Biological Scien-
ces, University of South Carolina, Columbia, South Carolina, USA, *Department of Estuarine and Ocean Sciences, School
for Marine Science and Technology, University of Massachusetts, Dartmouth, Massachusetts, USA

Abstract The export of terrigenous dissolved organic carbon (tDOC) and other river-borne material
across the continental shelf boundary has important ramifications for biological productivity and the cycling
of continentally derived bioelements in the ocean. Recent studies revealed the 275-295 nm spectral slope
coefficient of chromophoric dissolved organic matter (CDOM), Sy75.29s, is a reliable tracer for terrigenous
dissolved organic carbon (tDOC) in river-influenced ocean margins. Here an empirical algorithm for the
accurate retrieval of S;75_295 from ocean color was developed and validated using in situ optical properties
collected seasonally in the northern Gulf of Mexico. This study also demonstrated S,;5. 5 is a robust proxy
for tDOC concentration in this environment, thereby providing a means to derive surface tDOC concentra-
tions on synoptic scales and in quasi-real time using remote sensing. The resulting tDOC-algorithm was
implemented using Aqua-MODIS in a retrospective analysis of surface tDOC concentrations over the north-
ern Gulf of Mexico between July 2002 and June 2013. Large pulses of tDOC were observed in continental-

slope surface waters oft the Mississippi River delta, indicating cross-shelf export of tDOC was sporadic and
exhibited considerable interannual variability. Favorable winds following an anomalously high discharge
from the Mississip pi-Atchafalaya river system always coincided with a major export event, and in general,
cross-shelf export was enhanced during years of anomalously high discharge. The tDOC-algorithm will find

applicability in the assessment of future climate- and human-induced changes in tDOC export, in biogeo-
chemical models of the continental shelf, and in the validation of high-resolution coastal models of
buoyancy-driven shelf circulation.
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Modeling the transport of freshwater and dissolved organic carbon in (!) CroceMark
the Neuse River Estuary, NC, USA following Hurricane Irene (2011)

Matthew M. Brown?, Ryan P. Mulligan ®, Richard L Miller®*

* Deparmment of Geological Sciences, East Carolina University, Greenville, NC 27858, USA
" Department of Civil Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
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Transformations

Inland Water CO, Efflux- 2.2Gt yr!

Raymond et al 2013
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Surface Area

* Very few estimates of global stream/river surface
area

e Estimate from length and width

e Spatial length products (e.g. HydroSHEDS and
NHDplus) advancing quickly

e Width estimates and measurements also
advancing quickly
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Stream Surface Area- Width
Comparing Two Data Sets
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Stream Gas Transfer Velocity (k)

47 - Gas transfer velocity and hydraulic geometry - Raymond et al.

Table 2 Fitted equations for predicting the ks, (m d—7) based on stream velocity (V, in m s—7), slope (S; unitless), depth (D, in meters), discharge (Q, in m*s—"), and the
Froude number (Fr = V/(gD)°*). Also displayed are the standard deviations (&1 SD) for the equation parameters, r2, slope (£SE), and y-intercept (3 SE for regressions of the

equation output vs. actual values; Fig. 3). All p-values for the regressions are 0.0001.

Model equation r? Slope y-Intercept

1. Kggo = (V/5) 08900020 ¢ 03420030 5 5037 + 604 0.72 0.92 + 0.024 0.98 £0.17
2. koo = 5937 £ 606 x (1 — 254 £ 0.223 X Fr?) x (VS)089+0017 x p 05820027 0.76 0.94 + 0.022 0.76 £ 0.16
3. keoo = 1162 £ 192 x §077+0028)/0.8520.045 0.54 0.91 £0.036 0.91+£024
4. kggo = (VS5)076+0927 x 9515+ 144 0.53 0.82 +£0.037 0.92 £ 024
5. koo = VS x 2841 £ 107 + 2.02 £ 0.209 0.55 1.0 £0.038 -48x10°+026
6. ksoo = 929 £ 141 x (VS) 07250027 5 QOo1T=0016 0.53 0.92 + 0.036 0.81 £ 0.24
7. koo = 4725 £ 445 x (V/S)086+0.016 )¢ 01420012 5 )06620.029 0.76 0.95 +0.023 0.57 £0.17

Keoo IS @ function of turbulence at the surface of streams
* Calculated from slope and velocity (Raymond et al. 2012)
* Velocity estimated from discharge and hydraulic equations
* Slope gathered from Hydrosheds
V = cQ
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Global River Width from Landsat
(GRWL) Database
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Toward global mapping of river discharge using
satellite images and at-many-stations
hydraulic geometry

Colin J. Gleason' and Laurence C. Smith

Department of Geography, University of California, Los Angeles, CA 90095-1524

Edited by James S. Famiglietti, University of California, Irvine, CA, and accepted by the Editorial Board February 18, 2014 (received for review
September 17, 2013)
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Significance

Political and practical realities limit our knowledge of water
resources in many parts of the world. Here, we present a radi-
cally different approach for quantitative remote sensing of
river discharge (flow rate) that is enabled by advancing a clas-
sic theory of river hydraulics and adapting it for use with sat-
ellite or aerial images. Because no ground-based information is
required, the approach holds promise for addressing pressing
societal, ecological, and scientific problems through global
mapping of river flow.
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Geophysical Research Letters ~h

RESEARCH LETTER A global inventory of lakes based on high-resolution

10.1002/2014GL060641 . .
satellite imagery
Kay Polnte: s Charles Verpoorter'?, Tiit Kutser®™?, David A. Seekell**, and Lars J. Tranvik?
« Earth has 117 million lakes > 0.002 km
. ;f&zd':‘emm'g:f; dominate 'INSU-CNRS, UMR 8187, LOG, Laboratoire d'Océanologie et des Géosciences, Université du Littoral Cote d’Opale, ULCO,
« Power law:baasi:!:::ra lations do not Wimereux, France, Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden, *Estonian
adequately estimate lake abundance Marine Institute, University of Tartu, Tallinn, Estonia, “Department of Environmental Sciences, University of Virginia,

Charlottesville, Virginia, USA, *Now at Department of Ecology and Environmental Sciences, Umea University, Ume3, Sweden
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Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR
ScanSAR images

Allan S. Arnesen **, Thiago S.F. Silva %, Laura L. Hess °, Evlyn M.L.M. Novo #, Conrado M. Rudorff €,
Bruce D. Chapman ¢, Kyle C. McDonald ¢

* Divisdo de Sensoriamento Remoto, Institu to Nacional de Pesguisas Espaciais, Caixa Postal 515, 12201-970, Sdo José dos Campeas, Brazil

® Earth Research Institute, 6832 Ellison Hall University of Califomia, Santa Barbara, CA 93106-3060, USA

¢ Bren School of Environmental Science & Management, 2400 Bren Hall University of California, Santa Barbara, CA 93106-5131 USA

¢ Jet Propulsion Labaratory, California Institute of Technology, Pasadena, CA 91109, USA

“ Department of Earth and Atmospheric Sciences, CUNY Environmental Crossroads Inifiative, and CUNY CREST Institute, City College of New York, ity University of New York,
160 Convent Ave. & W. 138th St, New York, NY 10031, USA

ow 5520w 55"10W
1 1 1

. a) [ Low water stage | [ sty aree
a)Brazll - % w - Purmanert, open walsr w
A~ £ 1 B
S / ~ ~ Hpzded N
tG -:\\ - Menbeoded
Amazonas 7/ Para /"~ 7 .
%‘\ e » o
_/ o [ seow SS'SOW  S5'0W  SS'30W  S5°20W T SSMOW_ 55'0W
] (] \ . > 5 - o
7 Al } { Curuai Lake floodplain ully area SRTM :
/ 4 - R 19T - Max: 174 m ® : »
/ -/ - & .-g?.
YA\ S ‘= o Min:0m v o T T T T T ~N
/ .,_‘\" tt\: E 1 1 1 1 1 L
/ e i O Visited points b)| High water stage | o [ susy wee
/ ‘ \\ w 3 o3 &L B B et opes wise || 0
7/ \ 2 B
—ar \ w u o~ o~
\ =] €
360 km \ s 3
409 orbit - ScanSAR/ALOS v ° » "
\
‘ 3 2 -2
\ N S g & &N
\!
AL o
v jo 25 50 = w
A Se— ~ -m_b
! ! 1 N T T T T T z
s6°0'W 85°50'W 25°40'W 85°30W 85°20'W 88*10wW 85°0'W 56°0'W 55°50'W 55°40°W 55°30'W 55°20'W 55°10'W

Fig. 1. Cunuai Lake floodplain. Lower Amazon River, Pard state, Brazil a) Hatched area represents the 409 ScanSAR/ALOS orbit; b) Curuai Lake floodplain; the white line indicates t ) . . .
boundaries of the study area and white dots represent field locations visited during the rising water stage of 2011 (April). Background is SRTM digital elevation model. Flg- 8. Flood extent mapped for the Curuai Lake ﬂoodphm (Lower Amazon River, BRZI]]
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representing the high water stage (b). The black line indicates the polygon considered
for flooded area cakculations.
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Conclusions

Inland waters transport terrestrial material to
the ocean but are also sites of active

processing

Ability to efficiently and accurately measure
land to water transfers improving greatly

Models will be able to use this new data to
link hydrology and terrestrial components

Refined estimates of surface area of inland
waters needed and are occurring.
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